本笔记作为《Shader入门精要》的部分要点回顾和补充
Shader中的光照模型
1、Lambert光照模型
Shader "Custom/Lambert"
{
Properties
{
_MainColor ("Main Color", Color) = (1, 1, 1, 1)
}
SubShader
{
Pass
{
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#include "UnityCG.cginc"
// 声明包含灯光变量的文件
#include "UnityLightingCommon.cginc"
struct v2f
{
float4 pos : SV_POSITION;
fixed4 dif : COLOR0;
};
fixed4 _MainColor;
v2f vert (appdata_base v)
{
v2f o;
o.pos = UnityObjectToClipPos(v.vertex);
// 法线向量
float3 n = UnityObjectToWorldNormal(v.normal);
n = normalize(n);
// 灯光方向向量
fixed3 l = normalize(_WorldSpaceLightPos0.xyz);
// 按照公式计算漫反射
fixed ndotl = dot(n, l);
o.dif = _LightColor0 * _MainColor * saturate(ndotl);
return o;
}
fixed4 frag (v2f i) : SV_Target
{
return i.dif;
}
ENDCG
}
}
}
2、Half-Lambert光照模型
Shader "Custom/Half-Lambert"
{
Properties
{
_MainColor ("Main Color", Color) = (1, 1, 1, 1)
}
SubShader
{
Pass
{
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#include "UnityCG.cginc"
#include "Lighting.cginc"
struct v2f
{
float4 pos : SV_POSITION;
fixed4 dif : COLOR0;
};
fixed4 _MainColor;
v2f vert (appdata_base v)
{
v2f o;
o.pos = UnityObjectToClipPos(v.vertex);
float3 n = UnityObjectToWorldNormal(v.normal);
n= normalize(n);
fixed3 l = normalize(_WorldSpaceLightPos0).xyz;
fixed ndotl = dot(n, l);
o.dif = _LightColor0 * _MainColor * (0.5 * ndotl + 0.5);
return o;
}
fixed4 frag (v2f i) : SV_Target
{
return i.dif;
}
ENDCG
}
}
}
3、Phong光照模型
Shader "Custom/Phong"
{
Properties
{
_MainColor ("Main Color", Color) = (1, 1, 1, 1)
_SpecularColor ("Specular Color", Color) = (0, 0, 0, 0)
_Shininess ("Shininess", Range(1, 100)) = 1
}
SubShader
{
Pass
{
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#include "UnityCG.cginc"
#include "Lighting.cginc"
struct v2f
{
float4 pos : SV_POSITION;
fixed4 color : COLOR0;
};
fixed4 _MainColor;
fixed4 _SpecularColor;
half _Shininess;
v2f vert (appdata_base v)
{
v2f o;
o.pos = UnityObjectToClipPos(v.vertex);
// 计算公式中的所有变量
float3 n = UnityObjectToWorldNormal(v.normal);
n = normalize(n);
fixed3 l = normalize(_WorldSpaceLightPos0.xyz);
fixed3 view = normalize(WorldSpaceViewDir(v.vertex));
// 漫反射部分
fixed ndotl = saturate(dot(n, l));
fixed4 dif = _LightColor0 * _MainColor * ndotl;
// 镜面反射部分
float3 ref = reflect(-l, n);
ref = normalize(ref);
fixed rdotv = saturate(dot(ref, view));
fixed4 spec = _LightColor0 * _SpecularColor
* pow(rdotv, _Shininess);
// 环境光+漫反射+镜面反射
o.color = unity_AmbientSky + dif + spec;
return o;
}
fixed4 frag (v2f i) : SV_Target
{
return i.color;
}
ENDCG
}
}
}
4、逐像素光照
Shader "Custom/per-pixel Phong"
{
Properties
{
_MainColor ("Main Color", Color) = (1, 1, 1, 1)
_SpecularColor ("Specular Color", Color) = (0, 0, 0, 0)
_Shininess ("Shininess", Range(1, 100)) = 1
}
SubShader
{
Pass
{
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#include "UnityCG.cginc"
#include "Lighting.cginc"
struct v2f
{
float4 pos : SV_POSITION;
float3 normal : TEXCOORD0;
float4 vertex : TEXCOORD1;
};
fixed4 _MainColor;
fixed4 _SpecularColor;
half _Shininess;
v2f vert (appdata_base v)
{
v2f o;
o.pos = UnityObjectToClipPos(v.vertex);
o.normal = v.normal;
o.vertex = v.vertex;
return o;
}
fixed4 frag (v2f i) : SV_Target
{
// 计算公式中的所有变量
float3 n = UnityObjectToWorldNormal(i.normal);
n = normalize(n);
fixed3 l = normalize(_WorldSpaceLightPos0.xyz);
fixed3 view = normalize(WorldSpaceViewDir(i.vertex));
// 漫反射部分
fixed ndotl = saturate(dot(n, l));
fixed4 dif = _LightColor0 * _MainColor * ndotl;
// 镜面反射部分
float3 ref = reflect(-l, n);
ref = normalize(ref);
fixed rdotv = saturate(dot(ref, view));
fixed4 spec = _LightColor0 * _SpecularColor
* pow(rdotv, _Shininess);
// 环境光+漫反射+镜面反射
return unity_AmbientSky + dif + spec;
}
ENDCG
}
}
}
5、Blinn-Phong模型
Shader "Custom/Blinn-Phong"
{
Properties
{
_MainColor ("Main Color", Color) = (1, 1, 1, 1)
_SpecularColor ("Specular Color", Color) = (0, 0, 0, 0)
_Shininess ("Shininess", Range(1, 100)) = 1
}
SubShader
{
Pass
{
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#include "UnityCG.cginc"
#include "Lighting.cginc"
struct v2f
{
float4 pos : SV_POSITION;
fixed4 color : COLOR0;
};
fixed4 _MainColor;
fixed4 _SpecularColor;
half _Shininess;
v2f vert (appdata_base v)
{
v2f o;
o.pos = UnityObjectToClipPos(v.vertex);
// 计算公式中的所有变量
fixed3 n = normalize(v.normal);
fixed3 l = normalize(_WorldSpaceLightPos0.xyz);
fixed3 view = normalize(WorldSpaceViewDir(v.vertex));
fixed3 h = normalize(view + l);
// 漫反射部分
fixed ndotl = saturate(dot(n, l));
fixed4 dif = _LightColor0 * _MainColor * ndotl;
// 镜面反射部分
fixed ndoth = saturate(dot(n, l));
fixed4 spec = _LightColor0 * _SpecularColor
* pow(ndoth, _Shininess);
// 环境光+漫反射+镜面反射
o.color = unity_AmbientSky + dif + spec;
return o;
}
fixed4 frag (v2f i) : SV_Target
{
return i.color;
}
ENDCG
}
}
}
6、实现阴影效果
Shader "Custom/Shadow Shader"
{
Properties
{
_MainColor ("Main Color", Color) = (1, 1, 1, 1)
}
SubShader
{
// -------- 基础Pass 为主要平行光产生投影 --------
Pass
{
// 添加Pass标签
Tags{"LightMode" = "ForwardBase"}
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#pragma multi_compile_fwdbase
#include "UnityCG.cginc"
#include "Lighting.cginc"
#include "AutoLight.cginc"
struct v2f
{
float4 pos : SV_POSITION;
float3 normal : TEXCOORD0;
float4 vertex : TEXCOORD1;
SHADOW_COORDS(2) // 使用预定义宏保存阴影坐标
};
fixed4 _MainColor;
v2f vert (appdata_base v)
{
v2f o;
o.pos = UnityObjectToClipPos(v.vertex);
o.normal = v.normal;
o.vertex = v.vertex;
TRANSFER_SHADOW(o) // 使用预定义宏变换阴影坐标
return o;
}
fixed4 frag (v2f i) : SV_Target
{
// 准备变量
float3 n = UnityObjectToWorldNormal(i.normal);
n = normalize(n);
float3 l = WorldSpaceLightDir(i.vertex);
l = normalize(l);
float4 worldPos = mul(unity_ObjectToWorld, i.vertex);
// Lambert光照
fixed ndotl = saturate(dot(n, l));
fixed4 color = _LightColor0 * _MainColor * ndotl;
// 加上4个点光源的光照
color.rgb += Shade4PointLights(
unity_4LightPosX0, unity_4LightPosY0, unity_4LightPosZ0,
unity_LightColor[0].rgb, unity_LightColor[1].rgb,
unity_LightColor[2].rgb, unity_LightColor[3].rgb,
unity_4LightAtten0, worldPos.rgb, n) * _MainColor;
// 加上环境光照
color += unity_AmbientSky;
// 使用预定义宏计算阴影系数
UNITY_LIGHT_ATTENUATION(shadowmask, i, worldPos.rgb)
// 阴影合成
color.rgb *= shadowmask;
return color;
}
ENDCG
}
// -------- 额外的Pass 为其他逐像素的灯光产生投影 --------
Pass
{
Tags{"LightMode" = "ForwardAdd"}
// 使用相加混合,使绘制的图像与上一个Pass完全混合
Blend One One
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#pragma multi_compile_fwdadd_fullshadows
#include "UnityCG.cginc"
#include "Lighting.cginc"
#include "AutoLight.cginc"
struct v2f
{
float4 pos : SV_POSITION;
float3 normal : TEXCOORD0;
float4 vertex : TEXCOORD1;
SHADOW_COORDS(2) // 使用预定义宏保存阴影坐标
};
fixed4 _MainColor;
v2f vert (appdata_base v)
{
v2f o;
o.pos = UnityObjectToClipPos(v.vertex);
o.normal = v.normal;
o.vertex = v.vertex;
TRANSFER_SHADOW(o) // 使用预定义宏变换阴影坐标
return o;
}
fixed4 frag (v2f i) : SV_Target
{
// 准备变量
float3 n = UnityObjectToWorldNormal(i.normal);
n = normalize(n);
float3 l = WorldSpaceLightDir(i.vertex);
l = normalize(l);
float4 worldPos = mul(unity_ObjectToWorld, i.vertex);
// Lambert光照
fixed ndotl = saturate(dot(n, l));
fixed4 color = _LightColor0 * _MainColor * ndotl;
// 加上4个点光源的光照
color.rgb += Shade4PointLights(
unity_4LightPosX0, unity_4LightPosY0, unity_4LightPosZ0,
unity_LightColor[0].rgb, unity_LightColor[1].rgb,
unity_LightColor[2].rgb, unity_LightColor[3].rgb,
unity_4LightAtten0, worldPos.rgb, n) * _MainColor;
// 使用预定义宏计算阴影系数
UNITY_LIGHT_ATTENUATION(shadowmask, i, worldPos.rgb)
// 阴影合成
color.rgb *= shadowmask;
return color;
}
ENDCG
}
}
FallBack "Diffuse"
}
7、使用Frame Debug分析渲染过程
学会使用Debug是每个程序员必须掌握的技术,当然图形学渲染也不例外,利用Unity中的Frame Debug工具可以让我们更加清晰的认识到unity渲染的步骤。具体步骤可以点击菜单栏Windows>Analysis>Frame Debugger
以上光照模型均利用顶点片段着色器来编写,我们会发现代码极其繁琐,不过请放心为了降低工作难度unity提供了表面着色器(Surface Shader)专门用于编写与灯光进行交互的Shader,在后续部分我们将直接利用表面着色器来使用这些光照模型。